MANGOLDT's FUNCTION

Hans Carl Friedrich von Mangoldt

\[\Lambda (n)\]

$$\Lambda ~~~~ Lambda $$

\[\Lambda(n) = \left\{\begin{matrix} ln(p)\ if\ n\ = \ p^{k}\\ 0\ otherwise \end{matrix}\right. \\ \\ with \ p \ prime \ and \ k \geqslant \ 1\]

\[\Lambda (n)= \begin{cases} & log_{e}(p)~~~~if~n~\forall~A000961~Powers~of~primes.\\ & 0~~~~~~~~~~if~n~\forall~A024619~Not~Powers~of~primes. \end{cases}\]

A024619 Not Powers of primes.

6,10,12,14,15,18,20,21,22,24,26,28,30,33,34,35,36,38,39,40,42,44
A024619    OEIS

A000961 Powers of primes.

1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49
A000961    OEIS

\[\Lambda (n)= ln(A014963(n))\]
\[A014963(n)=e^{\Lambda (n)} \\ =\frac{lcm(1,2,...,n)}{lcm(1,2,...,n-1)} \\ = \frac{A003418(n)}{A003418(n-1)}\]


n=6 # Example with n=6
lcm(range(1, n+1)) # A003418(n)
lcm(range(1, n+1))/lcm(range(1, n)) # A003418(n)/A003418(n-1)
numerical_approx(log(lcm(range(1, n+1))/lcm(range(1, n)),exp(1))) # Mangoldt's Function

table([(n,numerical_approx(log(lcm(range(1, n+1))/lcm(range(1, n)),exp(1))) ) for n in [1..50]], header_row=['n', 'MangoldtFunction(n)'])
Mangoldt = [numerical_approx(log(lcm(range(1, n+1))/lcm(range(1, n)),exp(1))) for n in range(1, 50)]
graphique = list_plot(Mangoldt, color='red', pointsize=10, title='Mangoldt function', aspect_ratio='automatic')
graphique.axes_labels(['$x$', '$y$'])
graphique.axes_labels_size(1)
graphique.set_axes_range(0, 50, 0, 4)
graphique.axes_width(0.5)
graphique

 n    MangoldtFunction(n)
+----+---------------------+
  1    0.000000000000000
  2    0.693147180559945
  3    1.09861228866811
  4    0.693147180559945
  5    1.60943791243410
  6    0.000000000000000
  7    1.94591014905531
  8    0.693147180559945
  9    1.09861228866811
  10   0.000000000000000
  11   2.39789527279837
  12   0.000000000000000
  13   2.56494935746154
  14   0.000000000000000
  15   0.000000000000000
  16   0.693147180559945
  17   2.83321334405622
  18   0.000000000000000
  19   2.94443897916644
  20   0.000000000000000
  21   0.000000000000000
  22   0.000000000000000
  23   3.13549421592915
  24   0.000000000000000
  25   1.60943791243410
  26   0.000000000000000
  27   1.09861228866811
  28   0.000000000000000
  29   3.36729582998647
  30   0.000000000000000
  31   3.43398720448515
  32   0.693147180559945
  33   0.000000000000000
  34   0.000000000000000
  35   0.000000000000000
  36   0.000000000000000
  37   3.61091791264422
  38   0.000000000000000
  39   0.000000000000000
  40   0.000000000000000
  41   3.71357206670431
  42   0.000000000000000
  43   3.76120011569356
  44   0.000000000000000
  45   0.000000000000000
  46   0.000000000000000
  47   3.85014760171006
  48   0.000000000000000
  49   1.94591014905531
  50   0.000000000000000

\[log_{e}(n)=ln(n)=\sum_{d|n} \Lambda (d)\]


numerical_approx(log(n,exp(1))) == sum([numerical_approx(log(lcm(range(1, d+1))/lcm(range(1, d)),exp(1))) for d in divisors(n)])

\[\Lambda (n)=\sum_{d|n} \mu (\frac{n}{d})ln(d)\]


numerical_approx(log(lcm(range(1, n+1))/lcm(range(1, n)),exp(1))) == sum([moebius(n/d)*numerical_approx(log(d,exp(1))) for d in divisors(n)])

A014963 Exponential of Mangoldt's function.

1,2,3,2,5,1,7,2,3,1,11,1,13,1,1,2,17,1,19,1,1,1,23,1,5,1,3,1
A014963    OEIS

# Exponential of Von Mangoldt's function

psi=4

exp(sum([ log(prod([1 - exp(  2*pi*I*k/(i+2)  ) for k in range(i+3) if gcd(i+2,k) == 1])) for i in range(psi-1)])).numerical_approx();
exp(sum([ log(prod([1 - exp(  2*pi*I*k/(i+2)  ) for k in range(i+3) if gcd(i+2,k) == 1])) for i in range(psi-1)]))

A003418 Least common multiple.

1,1,2,6,12,60,60,420,840,2520,2520,27720,27720,360360,360360,360360
A003418    OEIS

[lcm(range(1, n)) for n in range(1, 10)]

[1, 1, 2, 6, 12, 60, 60, 420, 840]