GCD & LCM

GCD $\Rightarrow$ Greatest Common Divisor of $a$ and $b$ : $gcd(a,b)$

If $gcd(a,b) = 1$ then $a$ and $b$ are said to be relatively prime.

If two positive integers $a$ and $b$ have the factorisations : $a=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{a} }$ and $b=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{b} }$ then $gcd(a,b)=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{min(a,b)} }$, where $min(a,b)$ mean the smaller of the two exponents $\alpha_{a}$ and $\alpha_{b}$.

LCM $\Rightarrow$ Least Common Multiple of $a$ and $b$ : $lcm(a,b)$

If two positive integers $a$ and $b$ have the factorisations : $a=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{a} }$ and $b=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{b} }$ then $lcm(a,b)=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{max(a,b)} }$, where $max(a,b)$ mean the bigger of the two exponents $\alpha_{a}$ and $\alpha_{b}$.

$gcd(a,b).lcm(a,b)=a.b$

If two positive integers $a$ and $b$ have the factorisations : $a=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{a} }$ and $b=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{b} }$ then $a.b=\prod_{p\epsilon \mathbb{P} }^{\infty}{p}^{\alpha_{a}+\alpha_{b} }$.

A003418 Least common multiple (or LCM) of {1, 2, ..., n}.

1,1,2,6,12,60,60,420,840,2520,2520,27720,27720,360360,360360,360360
A003418    OEIS

A025547 Least common multiple of {1,3,5,...,2n-1}.

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305
A025547    OEIS

A051426 Least common multiple of {2,4,6,...,2n}.

2, 4, 12, 24, 120, 120, 840, 1680, 5040, 5040, 55440, 55440, 720720, 720720
A051426    OEIS

A002110 Primorial numbers : product of first n primes. $p_{n}\#$

1,2,6,30,210,2310,30030,510510,9699690,223092870,6469693230,200560490130
A002110    OEIS

A051417 Quotients of consecutive values of lcm {1, 3, 5 ...,2n-1} or A025547(n+1)/A025547(n).

3, 5, 7, 3, 11, 13, 1, 17, 19, 1, 23, 5, 3, 29, 31, 1, 1, 37, 1, 41, 43
A051417    OEIS